Ma

KEY STAGE
3
ALL TIERS

2004

Mark scheme for Paper 1

Tiers 3-5, 4-6, 5-7 and 6-8 $\begin{array}{lc}\text { key stage } 3 \text { Assessing } \\ \text { sessment and report } & \text { porting arranges } \\ \text { arrangements keys } & \text { ments key stage } \\ \text { key stage } 3 \text { Assessm } & \text { age } 3 \text { Assessment }\end{array}$
tage 3 Assess
department for

education and skills

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

The 2004 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the Correct response } \\ \text { column. Refer also to the Additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a slip such as writing 4 } \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by 2 rather than 20 when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20$ f7	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, $£ 3-20$, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p , 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{aligned} \text { eg } & £ 3.2, £ 3 \text { 200, } £ 320, \\ & £ 3-2-0, \\ & £ 7.0 \end{aligned}$

Responses involving time

A time interval For example: 2 hours 30 mins

Accept \checkmark	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie $\quad 2: 30$	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept \checkmark	Do not accept \times
\checkmark Any unambiguous, correct indication eg 08.40, 8.40, 8:40, 0840, 840 , $8-40$, twenty to nine, 8,40 \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as 5:20pm, 17:20pm	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: $(5,7)$

Accept \checkmark	Do not accept \times
```\checkmark ~ U n a m b i g u o u s ~ b u t ~ u n c o n v e n t i o n a l ~ notation eg (05,07) ( five, seven ) ( }5, = % 7 ) (x=5, y=7)```	x Incorrect or ambiguous notation $\text { eg } \begin{aligned} & (7,5) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \left(x^{x}, 7,7 y\right) \\ & \left.5^{x}, 7^{y}\right) \end{aligned}$

## Responses involving the use of algebra

For example: $2+n \quad n+2 \quad 2 n$

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ The unambiguous use of a different case   eg $N$ used for $n$   $\checkmark$ Unconventional notation for multiplication   eg $n \times 2$ or $2 \times n$ or $n 2$   or $n+n$ for $2 n$   $n \times n$ for $n^{2}$   $\checkmark$ Multiplication by 1 or 0   eg $2+1 n$ for $2+n$   $2+0 n$ for 2   $\checkmark$ Words used to precede or follow   equations or expressions   eg $t=n+2$ tiles or   tiles $=t=n+2$   for $t=n+2$   $\checkmark$ Unambiguous letters used to indicate expressions $\text { eg } \quad t=n+2 \text { for } n+2$   Embedded values given when solving equations   eg $\begin{array}{r}3 \times 10+2=32 \\ \text { for } 3 x+2=32\end{array}$	! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own   eg do not accept $n$ tiles +2 $n \mathrm{~cm}+2$   x Change of variable   eg $x$ used for $n$   x Ambiguous letters used to indicate expressions $\text { eg } n=n+2$   However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.   x Embedded values that are then contradicted eg for $3 x+2=32$, $3 \times 10+2=32, x=5$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   $\checkmark$ Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10, 7 out of 10, 7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10   $\times$ A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in tiers 3-5 and 6-8.
A total of 121 marks is available in tiers 4-6 and 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk from Monday, 21 June 2004. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.






Tier \& Question							Coins
3-5 4	4-6	5-7 6	6-8				
6	1				Correct response	Additional guidance	
				3 m   or 2m   or   1m	Shows all five correct ways, with none incorrect or duplicated   eg   Shows at least four correct ways, with not more than one incorrect or duplicated   Shows at least three correct ways, with not more than two incorrect or duplicated	$\checkmark$ Zeros omitted   ! Values of coins given   Provided this is the only error, mark as $1,0,0$	


Tier \& Question						Matchboxes
3-5	4-6	5-7	6-8			
7	2				Correct response	Additional guidance
a	a			1m   1m   1m	$10.6$ $7.2$ $3(.0)$	$\checkmark$ Equivalent fractions or decimals
b	b			1 m	8	! Answer of 4   Accept only if it is clearly stated that another 4 boxes are needed   eg, accept   - 4 more   eg, do not accept   - 4




Tier \& Question					Measuring
3-5	4-6	5-7\|6-8	6-8		
10	5			Correct response	Additional guidance
			1m	Gives a correct explanation that shows the relationship between the volume of the jug and one litre eg   - It's 2 jugs   - Fill the jug once, pour it in the bucket and fill it again   - He uses $500+500$   - A jug is half a litre   - Empty into the bucket twice	$\checkmark$ Minimally acceptable explanation eg   - Fill it twice   - $500 \mathrm{ml} \times 2$   $\checkmark$ Jug assumed to be calibrated   eg   - Put 200 ml in the jug, then repeat to give a total of 5 times



Tier \& Question			tion		Club
3-5	4-6	5-7	6-8		
12	7			Correct response	Additional guidance
a	a		1m	Indicates False and gives a correct explanation   The most common correct explanations:   Identify the statement is incorrect for week 2 eg   - True for the first and last weeks only   Identify the statement is incorrect for one of the Wednesdays   eg   - The most popular day was a Wednesday   - The highest ever bar was Wednesday   - One Wednesday there were 27	$\checkmark$ Minimally acceptable explanation eg   - Not true for one of the weeks   - Wed was higher   ! Explanation unclear as to whether it refers to one week or all three weeks Condone   eg, accept   - Wed was the most popular day Do not accept incorrect explanations eg   - Each week Wed was most popular   ! Number of pupils identified Where the value is a multiple of 5 , do not accept incorrect values. Otherwise, within a correct response, accept integer values between the relevant multiples of 5 , eg for Monday of week 3 accept 26, 27, 28 or 29   $\times$ Incomplete explanation   eg   - Not always true
b	b		1m	Indicates True and gives a correct explanation   The most common correct explanations:   Identify that for each week 20 pupils attended eg   - 20 pupils went each Friday   Identify the relevant feature of the charts eg   - The bars are all the same height	$\checkmark$ Minimally acceptable explanation eg   - 20   - The bars are the same   $\times$ Incorrect explanation, or incomplete explanation that simply restates the information given   eg   - They are all 25 (error)   - Same amount went   - It's the same number each week




Tier \& Question				Points of intersection (cont)		
3-5	4-6	5-7	6-8			
13	8	1			Correct response	Additional guidance
c	c	b		1m	Parallel	! Words used to describe parallel Accept if applicable to all sets of parallel lines   eg   - Never meeting   - At the same angle   - In the same direction   - Not touching each other   Do not accept if applicable to only some eg   - Vertical   - Horizontal   $\times$ Incomplete response describing parallel eg   - Like railway tracks   - Apart




Tier \& Question					Calculators
3-5	4-6 5	5-7 6	6-8		
16	11	4		Correct response	Additional guidance
			$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ o r \\ 1 \mathrm{~m} \end{gathered}$	$£ 27.50$   Shows the digits 275   eg   - 27.5   - 2750   - 2.75   or   Shows a complete correct method for how to multiply 1.25 by 22 , with not more than one computational error, but with the decimal point correctly positioned eg   - $12.50+12.50+1.25+1.25$   - $11 \times 2.50=10 \times 2.50+2.50$   - $\quad 125$   $\frac{22}{240}$ (error)   $\frac{2500}{2740}$ so 27.40	$\times$ Conceptual error   eg $\begin{array}{r} 125 \\ \times \frac{22}{250} \\ \hline \frac{250}{500} \text { so } 5.00 \end{array}$   ! Method is repeated addition   For 1 m , at least some multiplication must be shown or implied eg, for 1 m do not accept   - $1.25+1.25+\ldots .$.


Tier \& Question						Delivery charges
3-5	4-6	5-7	6-8			
17	12	5			Correct response	Additional guidance
a	a	a		1 m	Completes the table correctly, ie $\begin{array}{ll} 8 & 7 .(00) \\ 9 & 7.60 \end{array}$	$\checkmark$ For 9 books, a value between 7.55 and 7.65 inclusive   ! 7.60 shown as 7.6 Condone
b	b	b		1m	60 p	! Follow through from part (a) Accept provided their $7.60>$ their 7.00
c	c	c		1m	Draws the correct straight line $y=x$, at least of length 6 cm , including the point of intersection with the given line, with no errors	! Line not dashed   Condone   ! Line not ruled or accurate Accept provided the pupil's intention is clear   $\times$ Series of points that are not joined
d	d	d		1m	6	! Follow through from an incorrect line in part (c)   Provided there is only one point of intersection, follow through as the closest integer value above their $x$-value eg, from their intersection as $(7.2,6.5)$, accept   - 8   eg, from their intersection as $(4,4.6)$, accept - 5   ! Maximum of 10 books assumed   Condone   eg, accept   - 6 to 10 books



Tier \& Question						Fractions
3-5	4-6	5-7	6-8			
19	14	7			Correct response	Additional guidance
					$\frac{1}{3}$ or equivalent fraction   $\frac{7}{12}$ or equivalent fraction $\frac{1}{6}$ or equivalent fraction	! Decimals used   For $\frac{1}{3}$, accept 0.33 or better   For $\frac{7}{12}$, accept $0.58,0.583(\ldots)$   For $\frac{1}{6}$, accept $0.17,0.16,0.166(\ldots)$




Tier \& Question			Cuboids (cont)		
3-5 4-6	5-7	6-8			
16	9	2		Correct response	Additional guidance
b	b	b	1m	Indicates All the same	
c	c	c	1m	4	
d	d	d	3 m   or 2 m   or 1m	Shows, in any order, all four correct sets of dimensions   eg   Shows three correct sets of dimensions   Shows two correct sets of dimensions	! Repeated sets of dimensions eg   Ignore the repeats and mark as $1,0,0$   $\times$ Negative or non-integer dimensions used


Tier \& Question		Shading		
3-5 4-6	5-7 $6-8$			
17	103		Correct response	Additional guidance
a	a a	1m	Indicates No and gives a correct explanation   The most common correct explanations:   State or imply that the sides are not all the same length   eg   - The sides are not all the same length   - Only 2 sides are the same   State or imply that the angles are not all the same eg   - The angles are not all equal   - The angles aren't $60^{\circ}$   State or imply that the order of rotation symmetry is not 3 , or that the shape does not have 3 lines of symmetry	$\checkmark$ Minimally acceptable explanation   eg   - The lengths are different   - An equilateral triangle has equal sides   - It is isosceles   - One side is 4 , the others are 4.5   - The angles are different   - It has rotation symmetry of order 1   - It doesn't have rotation symmetry   - There is only one line of symmetry   $\times$ Incorrect explanation   eg   - No sides are equal   - No equal angles
b	b b	1m	Indicates Yes and gives a correct explanation, even if the fact that the shape is a quadrilateral is not stated explicitly   The most common correct explanations:   State or imply there are two pairs of adjacent equal length sides eg   - The long sides are next to each other and they are the same length. So are the short   - Two isosceles triangles on either side of the same base   - Two pairs of equal length sides, but opposite sides are not parallel   State or imply that the quadrilateral has exactly one line of symmetry through opposite vertices eg   - The only line of symmetry is a diagonal   State or imply that one diagonal bisects the other at right angles   eg   - One diagonal is the perpendicular bisector of the other	! Minimally acceptable explanation (sides) Note the explanation must make it explicit that the sides are both equal and adjacent eg, accept   - The top two sides are the same and the bottom two sides are the same   - Two joining sides equal, other two also equal   - It's two isosceles triangles   eg, do not accept   - Two pairs of equal length sides   - It has a big triangle and a little triangle   - Opposite sides are equal in length   $\times$ Incomplete explanation   eg   - There are two equal opposite angles   $\checkmark$ Minimally acceptable explanation (symmetry)   eg   - Relevant line of symmetry identified on diagram   $\times$ Incomplete explanation (symmetry)   eg   - It has one line of symmetry [no line or incorrect line of symmetry shown on diagram]


Tier \& Question					Shading (cont)
3-5 4-6	5-7	6-8			
17	10	3		Correct response	Additional guidance
c	c	c	1m	Indicates Yes and gives a correct explanation   The most common correct explanations:   State or imply both that the sides are equal and the angles are equal   eg   - 4 equal sides and 4 right angles   - It has 4 sides the same length and a right angle   State or imply that the order of rotation symmetry is 4   State or imply that the shape has 4 lines of symmetry	$\checkmark$ Minimally acceptable explanation eg   - Same sides, same angles   $\times$ Incomplete explanation   eg   - 4 sides that are the same length   - 4 right angles   - Sides are the same length and if you rotate it it's a square   - Same sides and it has rotation symmetry




Tier \& Question					Thinking fractions (cont)
3-5 4-6	5-7	6-8			
19	12	5		Correct response	Additional guidance
	b	b		$\frac{3}{5}$ or equivalent fraction or decimal   Shows or implies that the fractions should be multiplied, even if there are subsequent conceptual or computational errors   eg   - $\frac{3}{4} \times \frac{4}{5}$   - $\frac{1}{4}$ of $\frac{4}{5}$ is $\frac{1}{5}$, then times 3   - $\frac{16}{20} \times \frac{15}{20}$   - $0.8 \times 0.75$   - $60 \%$   or   Shows a complete correct method involving finding fractions of an arbitrary amount, with not more than one computational error eg   - $\frac{4}{5}$ of $100=80, \frac{3}{4}$ of $80=60$, so it is 60 out of 100   - $\frac{3}{4} \times 20=15, \frac{4}{5} \times 15=3$ (error) so it's $\frac{3}{20}$	$\times$ The use of 'of' to imply multiplication   eg $\text { - } \frac{3}{4} \text { of } \frac{4}{5}$   As the phrase is suggested by the question, do not accept as the only evidence   $\times$ Incomplete method   To be complete, their final answer must show the connection between the arbitrary amount and the calculated value eg, do not accept   - $\frac{4}{5}$ of $100=80, \frac{3}{4}$ of $80=60$ without subsequent expression of 60 out of 100 or equivalent


Tier \& Question			Rearrange		
3-5 4-6		6-8			
20	13	6		Correct response	Additional guidance
	a	a	1m   1m   1m	$\begin{aligned} & a-4 \\ & \frac{c}{4} \\ & 4 k+3 \end{aligned}$	$\checkmark c \div 4$
	b	b	$2 \mathrm{~m}$   or   1m	Rearranges correctly eg   - $\frac{w}{5}-2$   - $\frac{w-10}{5}$   Shows or implies a correct first step of algebraic manipulation eg   - $2+t=\frac{w}{5}$   - $10+5 t=w$   - $5 t=w-10$   - $w-10 \div 5$	$\checkmark$ For 2m, negative denominator   eg   - $\frac{10-w}{-5}$   ! For 2m, use of division sign   Accept provided there is no ambiguity eg, accept   - $w \div 5-2$   - $(w-10) \div 5$   eg, do not accept   - $w-10 \div 5$


Tier \& Question					Journey
3-5	4-6\|5-7	6-8			
	14	7		Correct response	Additional guidance
			$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Shows the journey time is $2 \frac{1}{2}$ (hours)   or   Shows a complete correct method eg   - $60 \div 2.5$   - $60 \div(100 \div 40)$   - $60 \times 2 \div 5$   - $40 \times 0.6$   - $60=\frac{3}{5}$ of 100 , so $\frac{3}{5}$ of 40   or   The only error is to misread $A$ for $B$, giving an answer of $66 \frac{2}{3}$	! Answer given as a decimal Accept 66.7 or 66.6 or $66.6(\ldots)$ Do not accept 67 unless a correct method or a more accurate value is seen


Tier \& Question						Factors again
3-5	4-6 5-	5-7 6	6-8			
		15	8		Correct response	Additional guidance
		a	a	1m	Indicates $(y+2)(y+6)$, ie	
		b	b	2 m   or   1m	Gives a correct simplified expression eg   - $y^{2}+11 y+18$   - $11 y+18+y^{2}$   Multiplies out the brackets correctly, even if there is incorrect or no further simplification eg $y^{2}+9 y+2 y+18$   or   The only error is in the constant term but the pupil simplifies correctly to give an expression of the form $a y^{2}+b y+c$   eg $\text { - } y^{2}+9 y+2 y+11(\text { error })=y^{2}+11 y+11$	! Use of multiplication sign in simplified expression   Accept either $y \times y$ or $11 \times y$, but not both


Tier \& Question			Marking overlay available		Rodents
3-5	6-7	6-8			
	16	9		Correct response	Additional guidance
	a	a	1 m	Indicates the correlation is positive	! Positive qualified   Ignore   eg, accept   - Strong positive   - Direct positive   $\times$ Sign of correlation not indicated   eg   - High   - Strong   ! Relationship quantified   Ignore if alongside a correct response Otherwise, do not accept   $\times$ Relationship described without reference to correlation   eg   - The longer the body, the longer the feet
	b	b	1 m	Draws a line of best fit within the tolerance, and at least of the length, as shown on the overlay	! Line not ruled or accurate   Accept provided the pupil's intention is clear   ! Line of best fit is incorrect beyond the dashed lines on the overlay Condone eg, accept   - A correct line of best fit that is then joined to the origin
	c	c	1 m	Indicates 7	







Tier \& Question							Births
3-5	4-6	5-7 6	6-8				
			13		Correct response	Additional guidance	
			a	1 m	1920	$\checkmark$ Unambiguous indication eg $\cdot 1.13 \times 10^{6}$	
			b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	$4.5 \times 10^{4}$   Shows or implies the value 45000 eg   - 45000   - $45 \times 10^{3}$   - $0.45 \times 10^{5}$	```x Incorrect value eg - 45 \times 104 - 4.5'```	


Tier \& Question						Factors
3-5	-6 5	5-7 6-8				
			4		Correct response	Additional guidance
			a	1m	$a=4$ and $b=3$	! For parts (a) and (b), values embedded Accept embedded values but do not accept incorrect statements eg, for part (a) accept   - $2^{4}$ and $2^{3}$ seen eg, for part (a) do not accept   - $a=2^{4}$ or $b=2^{3}$
			b	1m	7	$\checkmark$ For part (b), follow through from part (a) as the sum of their values for $\boldsymbol{a}$ and $b$


Tier \& Q	Question	Population		
3-5\|4-6	5-7 6 6-8			
	15		Correct response	Additional guidance
	a	1m	Indicates False and gives a correct explanation eg   - Although the number of under 20 s is constant, the population size has changed   - It's a smaller proportion of the whole population   - The overall number of people has increased so the percentage will drop   - $\frac{2.3}{6} \neq \frac{2.3}{9}$   - It's out of more people	$\checkmark$ Minimally acceptable explanation eg   - There are more people (in 2050)   ! Values evaluated or approximated Accept within the following inclusive ranges: 1998   No. of people < 20: 2 or 2.2 to 2.4 (billion) Total no. of people: 5.9 to 6.1 (billion) Proportion of people $<2033 \%$ to $45 \%$ 2050   No. of people < 20: 2 or 2.2 to 2.4 (billion) Total no. of people: 8.8 to 9.2 (billion) Proportion of people $<20 \quad 20 \%$ to $30 \%$ 1998 to 2050   Proportional increase needed $45 \%$ to $55 \%$ eg, accept   - To keep the number of under 20s about the same it would need to be about $50 \%$ more
	b	1m	Gives a value between 45 and 55 inclusive	
	c	1m	Gives a value between 250 and 350 inclusive	
	d	1 m	Makes a correct statement that refers both to the increase in the population as a whole and to the increase in the proportion of the population who are aged 60 or over, or, minimally, 40 or over eg   - By 2050 the world's population is expected to have risen by $50 \%$. Much of this increase will be from people aged 60 or over   - The whole population will be bigger but the proportion of young people will be less	! Use of 'old' or 'young'   Accept old for people over 60, or, minimally, over 40   Accept young for people under 20, or, minimally, under 40   $\checkmark$ Implicit reference to the increase in the population as a whole   eg   - Number of young people stays the same but old people increases   ! Follow through   Accept provided this does not invalidate the correct conclusion   $\mathbf{x}$ Incomplete interpretation   eg   - More people in 2050 , more over 60   - The world population will be bigger and people are expected to live longer   - Proportion of young people will be less   $\times$ No interpretation   eg   - The world population will increase by $50 \%$ and the number of people over 60 will increase by $300 \%$





Tier \& Question			Proving		
3-5	4-6 5	5-7 $6-8$			
		18		Correct response	Additional guidance
			3 m	Gives a correct proof   The most common correct proofs:   Use algebra to manipulate expressions representing two consecutive numbers, interpreting the results eg   - $n$ and $n+1$ are consecutive numbers $\begin{aligned} & n^{2}(n+1)^{2}=n^{2}+2 n+1 \\ & n^{2}+n^{2}+2 n+1=2 n^{2}+2 n+1 \\ & \quad=2\left(n^{2}+n\right)+1, \text { which is odd } \\ & (2 x)^{2}=4 x^{2} \quad \\ & (2 x-1)^{2}=4 x^{2}-2 x-2 x+1, \\ & 4 x^{2}+4 x^{2}-2 x-2 x+1 \text { is } \\ & \text { even }+ \text { even }- \text { even }- \text { even }=\text { even, } \\ & \text { then }+1 \text { makes it odd } \end{aligned}$   Reason generally about odd and even numbers, showing explicitly the following four steps   1. Of the two numbers, one must be odd (or one must be even)   2. Odd 2 is odd   3. Even ${ }^{2}$ is even   4. Odd + even is odd   eg   - Out of the two you pick, one will be even and so have an even square.   One will be odd and so have an odd square. An odd number added to an even number gives you an odd number	! Numbers used   Ignore if used to illustrate but do not accept explanations that lack generality   eg, do not accept   - $3^{2}=9,4^{2}=16$   $9+16=25$, which is odd   $\checkmark$ Minimally acceptable proof   eg, using algebra $\begin{aligned} & n^{2}+(n+1)^{2}=2 n^{2}+2 n+1 \\ &=2\left(n^{2}+n\right)+1 \\ & \cdot n^{2}+(n+1)^{2}=2 n^{2}+2 n+1 \\ &=\text { even }+ \text { even }+1 \\ & \cdot(2 x)^{2}+(2 x-1)^{2}=4\left(2 x^{2}-x\right)+1 \end{aligned}$   eg, reasoning generally   - One is odd, odd $\times$ odd $=$ odd   even $\times$ even $=$ even   odd + even $=$ odd   - Consecutive numbers are odd and even, and consecutive square numbers alternate between being odd and even. Odd + even $=$ odd   $\times$ For $3 m$, incomplete mathematical communication   eg   - One is odd, one is even Square them both and you have one odd number, and odd + even is odd



First published in 2004
© Qualifications and Curriculum Authority 2004

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:
QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

